A note on constructions of bent functions from involutions

نویسنده

  • Sihem Mesnager
چکیده

Bent functions are maximally nonlinear Boolean functions. They are important functions introduced by Rothaus and studied firstly by Dillon and next by many researchers for four decades. Since the complete classification of bent functions seems elusive, many researchers turn to design constructions of bent functions. In this note, we show that linear involutions (which are an important class of permutations) over finite fields give rise to bent functions in bivariate representations. In particular, we exhibit new constructions of bent functions involving binomial linear involutions whose dual functions are directly obtained without computation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Existence (Based on an Arithmetical Problem) and Constructions of Bent Functions

Bent functions are maximally nonlinear Boolean functions. They are wonderful creatures introduced by O. Rothaus in the 1960’s and studied firstly by J. Dillon since 1974. Using some involutions over finite fields, we present new constructions of bent functions in the line of recent Mesnager’s works. One of the constructions is based on an arithmetical problem. We discuss existence of such bent ...

متن کامل

Generalized Boolean Bent Functions

The notions of perfect nonlinearity and bent functions are closely dependent on the action of the group of translations over IF2 . Extending the idea to more generalized groups of involutions without fixed points gives a larger framework to the previous notions. In this paper we largely develop this concept to define G-perfect nonlinearity and G-bent functions, where G is an Abelian group of in...

متن کامل

Bent and Semi-bent Functions via Linear Translators

The paper is dealing with two important subclasses of plateaued functions: bent and semi-bent functions. In the first part of the paper, we construct mainly bent and semi-bent functions in the Maiorana-McFarland class using Boolean functions having linear structures (linear translators) systematically. Although most of these results are rather direct applications of some recent results, using l...

متن کامل

On the Existence and Constructions of Vectorial Boolean Bent Functions

Recently, one of the hot topics on vectorial Boolean bent functions is to construct vectorial Boolean bent functions in the form Tr m(P (x)) from Boolean bent functions in the form Tr 1 (P (x)), where P (x) ∈ F2n [x]. This paper first presents three constructions of vectorial Boolean bent functions in the form Tr m(P (x)), where two of them give answers to two open problems proposed by Pasalic ...

متن کامل

On the Primary Constructions of Vectorial Boolean Bent Functions∗

Vectorial Boolean bent functions, which possess the maximal nonlinearity and the minimum differential uniformity, contribute to optimum resistance against linear cryptanalysis and differential cryptanalysis for the cryptographic algorithms that adopt them as nonlinear components. This paper is devoted to the new primary constructions of vectorial Boolean bent functions, including four types: ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015